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A B S T R A C T   

The operational hydrologists of the United States’ National Weather Service (NWS) develop river forecasts as 
guidance for those at risk of flood damage and update those flood forecasts in real-time as more information 
becomes available. To do so they rely on experience and intuition to adjust the inputs, state variables, and 
parameters of hydrologic models. NWS hydrologists use the term “modifiers” to refer collectively to these ad
justments. This paper demonstrates the development and application of tools (statistical and graphical) to aid 
operational hydrologists in the achievement of accurate flood forecasts. Analysis of variance (ANOVA) identifies 
the relative contribution to forecast uncertainty of each modifier. Heat map visualizations illustrate for opera
tional hydrologists the basin, lead-time, and season-specific effects of their modifiers choices. The tools provide 
operational hydrologists with insight into which of three commonly applied modifiers (precipitation, soil 
moisture, and unit hydrograph shape) are most likely to provide improvement in flood forecast accuracy. The 
tools are demonstrated for a case study of four watersheds within in the Ohio River Valley, using data for flood 
events sampled from 1990 to 2018. The findings of this research show that operational hydrologists in the Ohio 
River Basin would do well apply no modifiers in the winter (leaving hydrologic input variables and parameters at 
baseline values). And though the forecast might be improved by real-time adjustments to the unit hydrograph in 
summer months, recommendations for particular unit hydrograph modification levels cannot be made with 
confidence. These findings call into question the modifier adjustment program as a standard process. In the 
evaluated cases, modifiers do not systematically improve flood forecasts. Improvement may be more efficiently 
achieved through better calibration of hydrologic models or techniques for reduction of precipitation 
uncertainty.   

1. Introduction 

Floods affect more people globally than any other type of natural 
disaster, inflicting devastating damages on human life and property 
(IFRC, 2015). In 2016, floods claimed 26 lives in the Ohio River Valley. 
Same year at a national scale, flooding caused 126 fatalities and over 
$10 billion in damages (NOAA, 2016a). The emergency management 
community, including federal agencies, state organizations and local 
police, fire, and rescue, coordinate and respond to these natural di
sasters. The National Oceanic and Atmospheric Administration’s 
(NOAA) National Weather Service (NWS) provides forecasts and warn
ings before floods start. The emergency management community relies 
on NWS flood forecasts when allocating resources and mobilizing 
response. Increased accuracy and timeliness of forecasts would allow 

better targeted, more efficient mobilization of preventative measures 
and emergency response, which can be used by stakeholders and deci
sion makers to respond to floods before they occur, saving lives and 
protecting property. Furthermore, investments in improvements to flood 
forecasts are cost effective and of low socio-environmental impact 
relative to the construction of new water infrastructure for flood pro
tection (such as dams or levees) or modification of infrastructure oper
ation rules and re-issuing of infrastructure control manuals (Butts et al., 
2007). 

The NWS provides real-time flood forecasts in collaboration with 
other agencies: the United States Geological Survey (USGS), US Bureau 
of Reclamation (USBR), US Army Corps of Engineers (USACE), and the 
Environmental Protection Agency (USEPA), among others. Thirteen 
NWS River Forecast Centers (RFCs) are responsible for providing the 5- 
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day streamflow forecasts for rivers throughout the country. The RFCs 
use the NWS Community Hydrologic Prediction System (CHPS; Adams 
and Pagano, 2016), which is based on the Flood Early Warning System 
(FEWS; Deltares, 2018). FEWS is a platform for the construction of 
operational forecasting systems and includes the ability to flexibly 
integrate third-party models and data (Werner et al., 2013). The NWS 
communicates river forecast products including the magnitude and 
uncertainty of floods or droughts to end users through the NOAA/NWS 
Advanced Hydrologic Prediction Service (AHPS). 

Despite the importance of NWS flood forecasts to national interests, 
relatively little progress has been made to systematically verify fore
casts, and further scientific research is needed to develop standard 
processes for hydrologic forecast verification (Welles et al., 2007; Brown 
et al., 2010; Zalenski et al., 2017). Channeling G.P. Box’s (1979) 
aphorism “all models are wrong, some are useful,” NWS hydrologists 
prioritize activities that promote understanding of error sources and 
adapt model parameters and configurations as those errors arise. 

Research regarding NWS streamflow forecasts shows room for 
improvement in forecasts, especially at longer lead-times (defined as the 
time between flood forecast start time and the time of peak streamflow) 
and with conditions of above flood-stage water levels (Welles et al., 
2007). Welles & Sorooshian (2009) demonstrated that improved esti
mates of antecedent hydrologic conditions would be especially useful at 
shorter lead-times, and improved precipitation forecasts would have the 
greatest positive effect on flood forecast accuracy at longer lead-times, 
especially above flood-stage forecasts. Post-processing is another 
method to reduce forecast uncertainty, yet the literature is scarce. Kang 
et al. (2010) used two case studies in Korea to demonstrate that the use 
of post-processing methods can effectively reduce the forecast uncer
tainty. Roulin and Vannitsem (2015) found that post-processing can 
largely correct the errors in parameter values. Better basin-specific 
calibrations of hydrologic and hydraulic routing models would be use
ful in most cases; however, calibrations targeting accuracy at high flows 
tend to sacrifice fidelity during periods of low flow, and vice versa. 
Because the same hydrologic models are used to answer a number of 
questions regarding flood and drought, calibration target compromises 
are required. 

Operational hydrology standards of practice in the NWS encourage 
forecasters to apply expert judgement to modify streamflow forecasts in 
real time, as new data become available. The FEWS software contains a 
“factors” mechanism to adjust forecast models, inputs, and state 

variables. Previous evaluations and verifications of NWS short-range 
flood forecasts (e.g., Liu & Gupta, 2007; Zappa et al., 2011), have not 
systematically evaluated the impact of human decision (i.e., operational 
hydrologist expert judgement) on forecast quality. In part to address this 
concern, the NWS has identified the need for better visualizations of the 
tendency of operational hydrologist modifications to improve forecast 
accuracy across a range of representative conditions. The goal of this 
paper is to evaluate the uncertainty in the NWS’s forecast model and 
develop a visualization tool to help operational hydrologists better un
derstand the modifier process of the NWS. 

1.1. Operational Hydrology 

In general, hydrologic science can be used for long-term planning 
purposes (such as water resources infrastructure design and manage
ment), or short-term operational purposes (such as the development of 
real-time forecasts). Excellent texts are available to provide the reader 
with background on hydrology for planning and management (e.g., 
Viessman and Lewis, 2003; Dingman, 2014), and a representative 
snapshot of hydrologic models available for water systems planning 
under uncertainty is presented in Ray and Brown (2015). 

Different from hydrology for planning purposes, operational flood 
forecasting systems are real-time and ever-evolving. The World Meteo
rological Organization (WMO) and Global Water Partnership (GWP) 
(2013) explain that, under operational conditions (e.g., during flood 
warning operations), the role of a forecast service is to collect and 
process data, run the forecast models, and then provide the forecast 
products to end users. Under standby conditions, the role of a forecast 
service is to maintain and improve the performance of the modeling 
system. The focus of this paper is on enhancements to operational hy
drological procedures. 

There are four main components of operational forecasting (Zappa 
et al., 2011): (1) numerical weather predictions (NWP); (2) hydrological 
initial conditions; (3) flood prediction systems; and (4) warnings for end 
users. Pagano et al. (2016) investigated 19 forecasting systems and 
identified three main types. First, passive systems run automatic simu
lations without human adjustment. Second, in observant systems, 
humans have little interaction with the model except for considering 
adjustments in model output when generating public products. Exam
ples of observant systems include the European Flood Awareness System 
(EFAS), the fledgling global offshoot (GloFAS), and the Flood 

Fig. 1. Operational tasks and experimental design (modification of Pagano et al., 2016).  
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Forecasting Center (FFC) in the United Kingdom (UK), which follows the 
observant paradigm with a higher level of automation. Third, in engaged 
systems, humans use expertise frequently in real-time forecasting pro
cesses to adjust the model. Operational forecasting in the NWS is most 
nearly of this type. Though humans tend to have a pessimistic view of 
models–a tendency to think models are worse than they really are 
(Skitka et al., 1999), expert forecasters are different. They demonstrate 
the ability to interpret real-world problems using forecast models (Pliske 
et al., 2004), and they make productive use of the information provided. 
NWS operational hydrologists actively accommodate model un
certainties. Instead of narrowly interpreting model results as “right” or 
“wrong”, they interpret model results as “likely or not” to provide 
actionable information to stakeholders. 

Fig. 1, modified from Pagano et al. (2016), shows the typical work
flow used by operational hydrologists, and the experimental design of 
this study. The modifications to conventional operational hydrologic 
processes proposed by this study are presented in red font. This study 
supplements the conventional operational hydrologic process by: 1) 
sampling flood events from a database of selected sub-watersheds; 2) 
generating forecast ensembles using systematically-varied factor levels; 
and 3) performing ANOVA analysis to decompose forecast uncertainty 
by factor before developing heat maps to visualize forecast uncertainty 
under a wide range of input conditions. 

1.2. Uncertainty in Flood Forecasts 

To ensure the usefulness of flood forecasts in disaster prevention and 
emergency response, accuracy is important, and understanding uncer
tainty is crucial. Following a process to: 1) define the source of uncer
tainty; 2) quantify the uncertainty; and 3) evaluate the uncertainty can 
lead to a reduction of uncertainty (Butts et al, 2007). Todini’s (2008) 
definition of “predictive uncertainty” in flood forecasts as the proba
bility of any future (real) value conditional upon all the knowledge and 
information achievable through a learning process up to present is 
adopted here. 

Unfortunately, uncertainties in flood forecasts build on each other. 
While each uncertainty may be relatively manageable on its own, in a 
cascade of uncertainty, the challenge of producing an accurate flood 
forecast magnifies. Fig. 2 illustrates this point. Red boxes identify the 

uncertainties in Fig. 2 that are of primary concern to this study: 1) 
precipitation; 2) antecedent soil moisture; and 3) the shape of the unit 
hydrograph. Uncertainty in future precipitation, hydrologic model 
calibration, and stage-discharge curve relationships are important, but 
not included among the primary modifiers attended to by NWS opera
tional hydrologists, and therefore are outside of the current scope. 

As shown in Fig. 2, a reasonable starting point for flood forecasts is 
the estimate of the amount of precipitation that has occurred in the past 
five days, and which is at some stage in the process of impacting 
streamflow soon to be observed at the station of interest. The precipi
tation of the past five days is uncertain because each point estimate of 
precipitation is uncertain (measurement uncertainty), and methods for 
interpolating between point observations of precipitation depth are 
imperfect (Kitzmiller et al., 2013). Satellite-based remote-sensed mea
surements and ground-based radar carry their own uncertainties (Baeck 
and Smith, 1998; Kitzmiller et al., 2013; Klazura et al., 1999; Smith 
et al., 1996; Young et al., 1999). 

The precipitation that will fall in the coming five days is, of course, 
not perfectly knowable because: 1) it is derived from imperfect models 
(e.g., Global Ensemble Prediction System (GEPS; Buizza et al., 2005; 
Candille et al., 2007) of the Meteorological Services (MSC) of Canada, 
United States National Center for Atmospheric Research (NCAR; Whi
taker et al., 2008), European Centre for Medium-Range Weather Fore
casts (Janiskova et al., 2018); and 2) because there is uncertainty in the 
best way to combine the output of the sampled models (Habib and Qin, 
2013). Antecedent soil moisture is estimated using a continuous soil 
moisture model calibrated over the course of ten years of observation 
(NOAA, 2010). The hydrologic model used by the NWS, SAC-SMA 
(NOAA, 2016b), has uncertainty in its energy balance and water bal
ance (Najafi et al., 2011), and the routing model, which is often one-size- 
fits-all (Viessman and Lewis, 2003), estimates the time to peak flow only 
approximately. Finally, the stage discharge curve, which translates flow 
into depth, is subject to imperfect estimates of bathymetry, and often is 
not derived for the particular basin under examination (Fread, 1973). 
Details on each of these factors will be provided in this section below. 

At the time a forecast is made, errors are contained in: 1) model 
input, 2) model states or 3) model parameterization. First, uncertain 
estimates of past precipitation and future precipitation are used, as 
shown at the top of Fig. 2. Uncertainty in past precipitation uncertainty 

Fig. 2. The cascade of uncertainty in real-time flood forecasting (after Wilby & Dessai, 2010).  
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is caused by measurement error and imperfect interpolation procedures. 
For estimates of future precipitation, the NWS relies on a network of 
sensors and gauges along with numerical weather modeling to provide 
the precipitation inputs that drive the hydrologic model. NWS opera
tional hydrologists are familiar with the error inherent in these inputs 
(Kitzmiller et al., 2013) and apply expert judgement to adjust for the 
errors. 

The NWS hydrologic model retains a set of state variables through 
time. These variables can be examined in the model at any point in time 
to understand the simulated conditions. Most often, it is the soil mois
ture state variables that are examined. In the NWS continuous soil 
moisture model, the state changes in time in response to precipitation 
and temperature inputs at rates determined by a set of parameters. 
Those parameters are assigned during a model calibration process dur
ing which model performance is evaluated against historical data (Gupta 
et al., 2003). Because NWS operational hydrologists are also involved in 
the calibration process, as a group they are aware of the errors in model 
states and capable of applying expert judgement when model states 
poorly represent the actual conditions of the soil moisture. Of note: 
because the priority of the NWS is accuracy during high flow events, the 
soil moisture model calibration tolerates systematic overestimates of 
(biases in) soil moisture, so that high flow events would not be 
underestimated. 

The hydrologic model adds its own uncertainty because of an 
inability to satisfactorily represent the complexities of a real-world 
watershed. NWS operational hydrologists are often able to identify 
when the simplifying assumptions in the hydrologic model may be 
violated. For example, the three assumptions inherent in lumped hy
drologic modeling are that rainfall occurs: 1) for a duration of one 
complete time-step; 2) at a steady intensity; and 3) uniformly over the 
full watershed. When these idealized assumptions are violated, as they 
nearly always must be, NWS operational hydrologists apply expert 
judgement to adjust the model. As both precipitation and soil moisture 
are inputs of the hydrologic model, uncertainty in the value of each 
accumulates in the hydrologic modeling process. 

Uncertainty in the rainfall-runoff from the hydrologic model then 
flows into the hydraulic routing process. The NWS uses a 6-hour unit 
hydrograph for every basin regardless of size or slope. Although simple 
and efficient, the assumptions underlying unit hydrographs are often 
violated, adding to total forecast uncertainty. In sum, after the stage- 
discharge transition, the overall uncertainty is embedded in the final 
flood forecast product. 

There are no well-accepted guidelines on quantifying uncertainty 
within flood forecast systems (Liu and Gupta, 2007) for deterministic 
hydrologic models. Krzysztofowicz (1999) introduced a Bayesian fore
casting system that decomposes forecast uncertainty into input uncer
tainty and hydrologic uncertainty, which can then be quantified 
independently and integrated into a Bayesian distribution. Wani et al. 
(2017) presented a non-parametric method to quantify residual uncer
tainty, which acts as a post-processor on model forecasts and generates a 
residual uncertainty distribution. Boelee et al. (2019) identified two 
methods in general to quantify uncertainty: 1) statistical methods 
(which calculate past model errors for specific conditions as an esti
mation of future model uncertainty); and 2) ensemble methods (which 
create ensembles of forecasts to understand forecast spread). Although 
in theory either statistical methods or ensemble-based methods could be 
used to estimate uncertainty in flood forecasts, it is difficult to identify 
the method most appropriate in any individual case due to the variety 
and complexity in flood forecasting and warning systems (Boelee et al., 
2019). This paper therefore uses both. 

This paper discusses past precipitation, soil moisture and flood 
routing uncertainty, but does not directly deal with uncertainty in future 
precipitation, hydrologic model calibration, or stage-discharge curves. 
Ensemble-based methods were used to generate forecast experiments, 
and (ANOVA) determined the relative sensitivity of the flood forecast to 
the three considered uncertain factors. Existing literature demonstrates 

the effectiveness of Analysis of Variance (ANOVA) to decompose 
aggregate forecast uncertainty into the contributions of model elements 
(Bosshard et al., 2013; Addor et al., 2014; Antonetti and Zappa, 2018). 
Heat maps illustrate the response of the generated ensembles to the same 
three uncertain factors explored using ANOVA techniques, and the 
resulting graphics provide quick references to understand uncertainty in 
the generated ensembles. Detailed background on uncertainty in pre
cipitation, soil moisture, unit hydrograph and hydrologic model cali
bration can be found in Supplemental Information Section 1. 

2. General Methodology 

2.1. Analysis of Variance (ANOVA) for flood forecasts – Experimental 
design 

ANOVA is a statistical procedure in which the total variation in a 
measured response is partitioned into components, which can be 
attributed to recognizable sources of variation (Milton and Arnold, 
1990). In this study, the sources/factors for variation between observed 
and simulated river streamflow are the modifiers of primary concern to 
NWS operational hydrologists: Precipitation (P), Soil Moisture (S), and 
Unit Hydrograph (H). Table 1 summarizes the three factors (modifiers) 
and their experimental levels. Each factor has different predefined 
levels, which represent the conditions for the experiment. The factor P is 
separable into 7 unique levels (i = 7) representing the percentage in
crease/decrease from the baseline value. The factor S ranges from 
completely dry to wet and has 5 unique levels (j = 5). Factor H repre
sents the shift in ordinates of the Unit Hydrograph: its base line, hori
zontal shift, flexibility in horizontal directions and flexibility in vertical 
direction, and are defined by 7 unique levels (k = 7). Details of unit 
hydrograph levels are provided in Table 2. A figure represents different 
shapes of unit hydrograph is provided in Fig. S1. 

The percent error was first computed for each generated ensemble as 
shown in Eq. (1): 

Ep =
|(Qsim − Qobs)|

Qobs
*100% (1)  

where, Ep is the percent error for each forecast ensemble, Qsim (Q rep
resents peak flow volume) is the simulated flow, Qobs is the observed 
flow. In order to better satisfy the normality requirement of the ANOVA 
analysis, a “box-cox” transformation was performed on Ep. A detailed 
description of the procedure for a “box-cox” transformation can be 
found in Box and Cox (1964). Then the ANOVA analysis was performed 

Table 1 
General levels of uncertainty in factors for operational hydrologic forecasts.  

Precipitation Soil Moisture Unit Hydrograph 

1 Least 1 Least 1 Baseline 
2 Lesser 2 Less 2 Left shift 
3 Less 3 Baseline 3 Right shift 
4 Baseline 4 More 4 High pass 
5 More 5 Most 5 Low pass 
6 Still More   6 Dispersion 1 
7 Most   7 Dispersion 2  

Table 2 
Detailed description of unit hydrograph levels.  

Factor level Description Interpretation 

1 Baseline Include the original unit hydrograph ordinates 
2 Left shift Drop left-most ordinate 
3 Right shift Add a zero-value ordinate to the left side 
4 High pass Replace lower valued half of ordinates with 0 
5 Low pass Replace upper valued half of ordinates with 0 
6 Dispersion 1 Apply a 3-ordinate moving average smoothing 
7 Dispersion 2 Apply a 5-ordinate moving average smoothing  

Z. Zhu et al.                                                                                                                                                                                                                                      



Journal of Hydrology X 11 (2021) 100073

5

on the transformed data of each flood forecast event at different lead- 
times. Details on the application of standard ANOVA procedures to 
this study can be found in Supplemental Information Section 3.1. 

2.2. Visualizing Uncertainty 

Hierarchical displays are promising (e.g., dimensional stacking and 
pixel display) (Keim, 2002; Žilinskas et al., 2013), in which some fea
tures in the plot are embedded in other features to present multi- 
dimensional data in a 2D basis. Heat maps as visualization aids have 
existed for over a century. Heat maps are intuitively effective displays of 
multi-dimensional data, with the x and y axes representing two di
mensions and colored rectangular tiles representing a 3rd dimension 
corresponding to the values of the data matrix. By combining multiple 
heat maps in a panel matrix plot, it is possible to show greater di
mensions of data in a limited space. 

In this paper, the x axis of a heat map was used to present the sea
sonality of flood events (monthly from January to December), and the y 
axis was used to present model parameter levels. Because for each event 
and lead time the precipitation modifier has 7 different levels that can be 
adjusted, the soil moisture modifier has 5 levels, and the unit hydro
graph modifier has 7 levels, there are 245 possible combinations of 
adjustments in total. Thus, the simulation results for all 245 ensembles 
(combinations) were generated using the NWS forecast model. To 
identify the best forecasts (combinations of parameter and input levels) 
in each reproduced historical case, only ensembles with the lowest 
percent error were displayed in heat map for each event. Colored tiles 
were then used to present the percent distribution of factor levels within 
each factor type among the best forecasts (see Eq. (1) for the percent 
error calculation). For instance, in January, the distribution of percent of 
precipitation factor levels is: 70% of events used precipitation level 4, 
20% used level 6 and 10% used level 7. Because only forecasts with the 
lowest error are displayed, this result could indicate that in January, 
precipitation level 4 has historically (in the limited sample of cases 
evaluated) had the highest probability to result in the lowest forecast 
error. Thus, the results will provide operational hydrologists with 
guidance as they aim to produce more accurate forecasts. Detailed 
interpretation of heat maps produced as part of this study is provided in 
the results section below. 

Conventional visualizations (bar plots) were used to show ANOVA 
analysis results (sum square error). 

3. Case Study and Results 

The Ohio River Basin covers over 200,000 square miles across 14 
states and is populated by more than 27 million people in more than 
2400 municipal jurisdictions. As one of the 13 RFCs of the NWS, the 
Ohio River Forecast Center (OHRFC) is responsible for monitoring of 
more than 900 streamflow points, 700 of which have real-time flood 
forecasts. The OHRFC makes use of several models within the CHPS 
operational environment, including the SAC-SMA model (Burnash and 
McGuire, 1973; Burnash, 1995), the SNOW-17 snow accumulation and 
ablation model (Anderson, 1973), several hydrologic routing models, 
and three reservoir simulation models. 

The OHRFC reviews weather and streamflow data daily at hundreds 
of locations, and updates river forecasts for each. Fig. 3 provides a 
representative illustration of the OHRFC river forecast hydrograph. The 
forecasting operation uses previously calibrated hydrologic models 
combined with weather forecasts to estimate flood hazard potential in 
the near future. Lead time in this study was defined as the difference 
between tnow and the time of the observed crest. The difference between 
tnow and t0 is always the same, 30-hours (1-day + 6-hours). The full 
simulation from t0 to tend is always 102 h (4-days + 6-hours). That means 
the forecast period (tnow to tend) is 72 h (3-days). Since these are head
water basins that crest within about 30-hours, that time frame captured 
all the relevant lead times. Six sets of t0 and tnow were created for each 
crest. The first set is for t0 at the synoptic time prior to the observed crest, 
and each subsequent one is six hours earlier. The precipitation modifiers 
were then applied to the model from t0 to tnow, and the observed pre
cipitation was applied to the period between tnow and tend. 

While this paper aims to help operational hydrologists better match 
the magnitude of flood events better through the use of statistical and 
visualization tools, there are other perspectives on the improvement of 
flood forecast accuracy. Ehret and Zehe (2011) introduced a new metric 
“series distance” to quantify the similarity in occurrence, magnitude and 
time of flood events. Zappa et al. (2013) developed a “peak-box” 
approach providing visual support that envelops all ensemble peak 
timings and peak discharge, from which specific verification metrics are 

Fig. 3. OHRFC river forecast hydrograph.  
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defined. 

3.1. Study Area 

The Ohio River Basin is region 5, HUC-2 (among the 21 US Hydro
logic Unit Codes). It has 14 HUC-4 sub regions that stretch over the 
states of Illinois, Indiana, Ohio, Kentucky, Virginia, West Virginia, 
Pennsylvania, Maryland, Tennessee and North Carolina. 

Four HUC-10 watersheds have been selected for case study: (1) 
Busseron Creek (CRLI3), a watershed in the Kentucky-Indiana area; (2) 
Sitlington Creek-Greenbrier River (DRBW2), a watershed in West Vir
ginia (3) North Fork Little Beaver Creek (ESTO1), a watershed in the 
Ohio-Illinois area; (4) Tygart Valley River at Dailey (DLYW2), a water
shed in West Virginia. Fig. 4 above shows the location map of the four 
HUC-10 case study watersheds. Headwaters were selected to minimize 
the influence of human activities on flood behavior (especially agricul
tural irrigation extractions and USACE operation of locks and dams), 
and to eliminate the complexity of channel routing. See Table S1 for 
detailed information on case study basins. 

3.2. ANOVA 

3.2.1. ANOVA application 
ANOVA analysis partitioned the uncertainty in OHRFC’s 5-day flood 

forecast. A total of L = 245 ensembles were generated for each evaluated 
historical flood event and lead-time (7 levels for precipitation, 5 levels 
for soil moisture, and 7 shapes for unit hydrograph). The adjustment to 
the precipitation is strictly applied for the observed values. When the 
simulated flow fails to match the observed flow, the precipitation 
modifiers adjust the “past precipitation”, either increasing or decreasing 
it to produce results as close to the observation as possible at any given 
time t. The precipitation modifiers were applied to the model from t0 to 

tnow (see Fig. 3), and the observed precipitation was applied to the 
period between tnow and tend. 

The initial selection set the magnitude of the change of factor levels 
(increase/decrease) as a percentage shifts from baseline levels. For 
precipitation the range of change was ±30%, for soil moisture the range 
of change was 0–100%, and for the unit hydrograph the levels were: 
right-left shift, vertical stretch-shrink and horizontal stretch-shrink. The 
initial trial runs showed flaws in the initial selection that they did not 
fully capture the magnitude of the flood events (for Busseron Creek, in 
particular). Thus, a slightly modified selection expanded the factor 
levels to those shown in Table 3. The Table 3 factor levels provided the 
necessary resolution for factor adjustments, adequately covered extreme 
events, and represented settings frequently chosen by the OHRFC 
operational hydrologists during their regular forecast adjustment 
practices. 

3.2.2. System to Apply Modifications 
The objective in this study is to guide forecasters in their application 

of modifiers to improve forecasts. A simple approach to this type of 
problem is a what-if test (Alberto Benitez-Andrades et al., 2018). A 

Fig. 4. Case study locations.  

Table 3 
Specific levels of factors for operational hydrologic forecasts in the Ohio River 
Valley.  

Precip Soil Moisture Unit Hydrograph 

1 − 90% 1 − 50% 1 Baseline 
2 − 80% 2 − 30% 2 Left Shift 
3 − 50% 3 Baseline 3 Right Shift 
4 Baseline (100%) 4 150% 4 High Pass 
5 150% 5 200% 5 Low Pass 
6 250%   6 Dispersion 1 
7 500%   7 Dispersion 2  
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what-if test evaluates the performance of the forecast with and without a 
modification. One limitation of this method is that the effect of indi
vidual modifiers can only be compared to the unmodified case. Opera
tional forecasters routinely apply multiple modifiers, and the modifiers 
themselves can have a range of values. To find the optimum family of 
modifiers, all potential modifiers across all potential values would need 
to be evaluated. 

Car manufacturers will perform car crash tests before launching a 
new model. Likewise, hydrologic model developers usually perform 
“crash-tests” to ensure the model is safe for use (Andréassian et al., 
2009). This study applied an expert system approach (Palmer & Holmes, 
1988) which elucidates the likely modifiers and their ranges of values 
from expert knowledge or judgement. A query of the OHRFC database 
identified the three modifier types most frequently used and the discrete 

values of each that cover the range of possible values (see Table 4). This 
led to 245 combinations of modifiers to apply for each hydrologic event 
for each basin. Perrin et al. (2008) also described a “discrete parame
terization” method to calibrate parameters of rainfall-runoff models, 
which provided a robust parameter set when streamflow time series 
available for calibration were less than two years. 

OHRFC created a system to execute the model at six different lead- 
times and summarize results under each of the 245 combinations of 
modifiers and levels. The data extracted from the OHRFC was then 
processed using computer algorithms written in R language. The algo
rithm calculated general indexes based on the data sets (such as 
ensemble identifiers and lead-time of flood forecasts, percent forecast 
error, etc.) so that the data sets were ready for ANOVA analysis and heat 
map application. Table 4 provides detailed information of selected 
events for this study. Only limited data were available for Busseron 
Creek and Sitlington. 

3.2.3. ANOVA Results 
Precipitation level 7 (baseline + 500%) dominated the ANOVA 

analysis, and provided no decision-relevant information. It was there
fore excluded from ANOVA results figures. Fig. 5(a) shows the ANOVA 
results at 0 lead-time, and Fig. 5(b) shows the same results at 30-hour 
lead-time. ANOVA results shown in Fig. 5 excluded residuals because 
their inclusion made the distribution results of selected factors less easily 
comparable. Fig. S2 (supplemental information) shows the same results 
with residuals included, for comparison. It is clear that a large portion of 
uncertainty comes from the model itself. A histogram of model error 
(ensembles without applying “mods”) of all flood events at 0-hour lead- 
time is also provided in the Supplemental Information. 

In Fig. 5, the x-axis shows factor type, the y-axis shows the sum 
square error of each factor. The λ values chosen for “box-cox” trans
formation for the four case studies were: 1) 0.28 for 0-hour lead time, 0.2 
for 30 h lead time for North Fork Little Beaver Creek, 2) (0.25, 0.24) for 
Tygart River Valley at Daily, 3) (0.44, 0.2) for Busseron Creek, and 4) 
(0.19, 0.21) for Sitlington Creek-Greenbrier River. Fig. 5(a) shows that 
at 0-hour lead time, soil moisture is the dominant uncertainty in North 
Fork Little Beaver Creek and Busseron Creek basin. The physical 

Table 4 
Detailed information of selected flood events.   

Number of events each month 

Month North Fork 
Little Beaver 
Creek 

Tygart River 
Valley at 
Daily 

Busseron 
Creek 

Sitlington 

1 47 38 1 0 
2 42 38 1 3 
3 70 46 2 1 
4 54 39 3 0 
5 41 41 4 2 
6 33 13 2 2 
7 23 22 2 0 
8 16 5 0 1 
9 12 7 0 0 
10 14 12 0 0 
11 20 18 0 0 
12 51 35 4 0 
Events 

time 
range 

1991-4-10 to 
2016-12-27 

2002-1-12 to 
2018-11-16 

2008-7-13 to 
2015-12-31 

2013-5-8 to 
2016-6-23 

Total 
events 

423 314 19 9  

Fig. 5. ANOVA bar plot for factor combinations at (a) 0-hour and (b) 30-hour lead-times: (1) North Fork Little Beaver Creek; (2) Tygart River Valley at Dailey; (3) 
Busseron Creek; (4) Sitlington Creek-Greenbrier River. 
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characteristics (see Table S1) of these two basins are highly alike, and 
they are of similar size (around 600 Km2) and landcover type (large area 
covered by cultivated crops). In each of these two basins, agriculture 
(with direct impact on soil moisture) is prominent. In Tygart Valley 
River, however, the dominant uncertainty is the precipitation forecast. 
Tygart Valley River is the smallest in size (479.15 km2) and mainly 
covered by deciduous forest. In Sitlington Creek-Greenbrier River, the 
largest uncertainty source is the unit hydrograph. This is the largest 
basin (875 km2), which magnifies the uncertainty in assumptions made 
regarding the unit hydrograph – uniform basin-wide precipitation, and 
the occurrence of all precipitation within a pre-defined unit of time. 
Forecasters should exercise caution in adjusting these factors at short 
lead-times, as small adjustments in these factors could rapidly increase 
(or decrease) forecast error. 

At 30-hours of lead-time (Fig. 5b), precipitation becomes the largest 
source of uncertainty in all studied basins. Precipitation is well-known to 
be one of the most important inputs to hydrologic models but is very 
difficult to predict with accuracy. The discussion of heat map results in 
the next section addresses the impact on precipitation uncertainty of 
seasonality and basin geography. 

Because residuals dominate all other sources of uncertainty and 
make interpretation of the figure difficult, they were removed from 
ANOVA results, see Supplemental Information Fig. S2 for ANOVA results 
with residuals. 

3.3. Heatmap Results 

To emphasize those modifiers that work best in each basin and 
month (and avoid clutter in visualizations), only combinations of 
modifiers resulting in the lowest forecast errors are included in heat map 
results. Only the single level of each of the three modifiers that provided 
greatest forecast accuracy was selected for each flood event and lead- 
time (1 precipitation modifier, 1 soil moisture modifier, and 1 unit 
hydrograph modifier). A description of the procedure for development 
of the heat maps in this study is provided in the Supplemental 
Information. 

Fig. 6 shows historical discharge (from USGS) and sampled events 
selected for this study. Note that, for the purposes of this study we have 
sampled only large flood events in summer, so that in some cases sum
mer values appear higher than winter values. That does not mean that 
floods in summer are larger than winter floods, in general. For the same 
reason, the number of events in summer is smaller than that in winter. 
The number of events sampled per month is shown at top of Fig. 6. 

From Fig. 6, the selected events for this study are usually at higher 
river stage, and intended to capture the historical extreme events. 
Seasonally, discharge in streams throughout the Ohio River basin is 
higher in winter (November to April) and lower in summer (May to 
August). 

The panels of Fig. 7 show heat map results for North Fork Little 

Fig. 6. Discharge of historical observations and sample events at North Fork Little Beaver Creek (a) and Tygart River Valley at Daily (b).  

Z. Zhu et al.                                                                                                                                                                                                                                      



Journal of Hydrology X 11 (2021) 100073

9

Beaver Creek at each evaluated lead-time: (a) 0-hour; (b) 6-hour; (c) 12- 
hour; (d) 18-hour; (e) 24-hour; and (f) 30-hour. The x axis in each panel 
represents the month of occurrence for the evaluated historical flood 
events, and the y axis identifies the level of each factor being modified. P 
represents the precipitation modifier and has 7 settings (rows), S rep
resents the soil moisture modifier (5 settings/rows) and U represents the 
unit hydrograph modifier (7 settings/rows). The baseline of each mod
ifier is outlined by solid black lines. The color key on the top left shows 
the percentage value. The redder the color, the smaller the percentage of 
evaluated historical cases in which this particular modifier setting was 
included in the best-performing set. Bright colors (yellows/whites) 
indicate that the modifier setting is the level at which greatest flood 
forecast accuracy is achieved across a large percentage of the evaluated 
historical cases. 

The lesson from Fig. 7 (North Fork Little Beaver Creek) is: modifi
cations should not be made to the baseline precipitation modifier level in 
winter; however, alternative precipitation modifier levels may be useful 
in summer. Focusing on Fig. 7(a), which is the result for a 0-hour lead- 
time, it is seen that precipitation modifiers have seasonal trends. During 
winter months (November to April), more than 70% of the best forecast 
ensembles used baseline precipitation (level 4), which indicates that 
adjustment in precipitation has not, in these historical cases, increased 
forecast accuracy during cold seasons and short lead-times. This corre
sponds with the ANOVA finding, that precipitation is not a dominant 
uncertainty at short lead-times, and therefore the potential benefits of 
adjusting it are small. Common sense tells us that the shorter the lead- 
time, the more accurate the precipitation forecast will be. As the lead- 
time increases (Fig. 7b-f), although results still show seasonality for 
precipitation, the percent distribution among levels of precipitation 
modifiers spreads out, indicating that adjustments to produce better 
forecasts at longer lead-times might be beneficial, especially during 

summer months (May-August). This finding could be explained with 
reference to synoptic and convective storm types. The Ohio River 
watershed tends to receive synoptic precipitation events in winter 
months and convective events in summer months (Archambault et al., 
2008; Lombardo & Colle, 2011). Synoptic events are easier to forecast, 
while convective events often result in rapid precipitation and flash 
floods, which are highly random and difficult to accurately predict. 
Thus, the considerations of modifier settings representative of de
viations from the baseline precipitation forecast are likely to be more 
fruitful in summer. 

For soils moisture, the lesson is: “Don’t touch the baseline soil 
moisture modifier from baseline except possibly to decrease it to level 
one (in the event that the recent past in the watershed was very dry).” 
Level 3 is the baseline. Seasonality in this parameter is seen as well, as it 
is linked to precipitation seasonality. Thus, forecasters should take care 
when adjusting soil moisture conditions during winter/summer. How
ever, different from precipitation, a level of the soil moisture modifier 
(level 1) is a part of the best-performing set often enough that it is a 
viable alternative to leaving the soils moisture modifier at its baseline 
level (this is especially during summer months). During hot and dry 
events common to summer months, the soil moisture may be lower than 
the default; thus, too much water may have been added to the hydro
logic model, and decreasing the soil moisture condition is an efficient 
way to reduce the error. In that case level 1 of the soil moisture modifier 
would beneficially be selected. It is very unlikely that departing from 
baseline soil moisture levels by selecting higher levels of soil moisture 
would be productive in the summer. 

If any adjustments are needed during winter months, the course of 
action most likely to improve the forecast accuracy is an adjustment to 
the unit hydrograph modifier. For the unit hydrograph, level 1 (base
line), 2 (left shift) and 7 (dispersion 2) are all frequently members of the 

Fig. 7. Heat maps for precipitation, soil moisture and unit hydrograph in North Fork Little Beaver Creek. (a) 0-hour lead-time; (b) 6-hour lead-time; (c) 12-hour lead- 
time; (d) 18-hour lead-time; (e) 24-hour lead-time; and (f) 30-hour lead-time. 
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best-performing set for this basin. Different from precipitation and soil 
moisture results, the unit hydrograph modifier is only weakly responsive 
to seasonality and lead-time. This is a meaningful finding because when 
simply adjusting precipitation and soil moisture does not provide sig
nificant improvement in forecast accuracy, the unit hydrograph could be 
the factor to be adjusted. Forecasters using the unit hydrograph modifier 
to improve forecast accuracy should consider performing a left-shift 
(level 2) to make flood peak sooner, or dispersion (level 7), to add a 
5-ordinate smoothing to better match the flood hydrograph. 

Fig. 8 shows the heat map results in Tygart Valley River at Dailey. 
The pattern of precipitation and soil moisture is similar to that for North 
Fork Little Beaver Creek, except that fewer adjustments to baseline 
factor levels are constructive across the historical cases evaluated as part 
of this study. This could indicate a higher accuracy of the precipitation 
forecast product and/or a better model calibration for this basin. Higher 
accuracy of flood forecasts resulting from modification of precipitation, 
soil moisture or unit hydrograph factor levels is unlikely. The best course 
of action for improvement of forecast accuracy in this basin would be 
improvement of the model calibration and reduction of residuals (see 
ANOVA Fig. S2). 

4. Discussion and Limitations 

This paper presents techniques for the efficient reduction of errors in 
NWS flood forecasts. ANOVA experiments identified the relative mag
nitudes of the uncertainty contributed by each uncertain factor. Heat 
maps illustrate the uncertainty in flood forecasts by season and lead- 
time for North Fork Little Beaver Creek and Tygart Valley River at 
Daily. ANOVA results show that the variation from any individual or 
combination of modifiers is generally an order of magnitude less than 

the variation from the residuals, indicating the largest source of uncer
tainty is from the model and its calibration. Residuals aside, ANOVA 
analysis also shows that soil moisture and unit hydrograph contribute 
more uncertainty at shorter lead-times, while precipitation is the largest 
source of uncertainty at longer lead-times. 

Heat maps show that at short lead-times, it is nearly always better to 
use the baseline level for precipitation. Even at large lead-times, changes 
to the baseline level of the precipitation modifier should not be made in 
winter; however, alternative precipitation modifier levels may be useful 
in summer (during localized convective events for which accurate pre
cipitation estimates are elusive). For soil moisture, changes should not 
be made to the baseline level except possibly to decrease it to level one 
(in the event that the recent past in the watershed was very dry). 
Different from precipitation and soil moisture results, the unit hydro
graph modifier is only weakly responsive to seasonality and lead-time. 
Left-shifts (to modifier level 2), or dispersion (level 7), to make flood 
peak sooner or add a 5-ordinate smoothing, respectfully, have been 
productive historically in the evaluated basins. Generally, however, 
none of the changes to modifier values are consistent improvements on 
baseline levels. It therefore appears to be good policy, except in a few 
specific circumstances, to leave the modifiers unchanged. 

Limitations of this work include: scarcity of information available on 
NWS RFC historical and current practice regarding the use of modifiers, 
relatively small study-area basins without channel routing, and a small 
number of basins studied. Thus, it is unknown if findings of this study 
apply to downstream basins with channel routing, larger sub-basins, or 
other climatologic regions. Further study of a variety of basins is needed 
in order to evaluate the general applicability of the findings presented 
here. 

Fig. 8. Heat maps for precipitation, soil moisture and unit hydrograph in Tygart Valley River at Daily. (a) 0-hour lead-time (b) 6-hour lead-time (c) 12-hour lead-time 
(d) 18-hour lead-time (e) 24-hour lead-time (f) 30-hour lead-time. 
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5. Conclusion and Next Steps 

This study shows the performance of ensembles of river flow fore
casts generated with different modifier levels. ANOVA analysis suggests 
largest source of uncertainty comes form the model, thus, better cali
bration of hydrologic models may reduce overall uncertainty. The re
sults also show that soil moisture and unit hydrograph are more 
dominant uncertainty sources at short lead times, while precipitation is 
the primary source of uncertainty at long lead times. 

Heat maps generated as part of this study show that both precipita
tion and soil moisture behavior have seasonality, and that real-time 
modifications made by NWS operational hydrologists might be useful 
in the summer season, but are unlikely to be fruitful in the winter. 
Operational hydrologists can also refer to the heat map to help decide 
which modifiers and what level to choose when adjustments are needed 
under specific month and lead-time. 

As mentioned earlier, adjustments to precipitation cannot improve 
forecast accuracy in seasons marked by synoptic precipitation patterns 
in which precipitation forecast accuracy is already reasonably strong. 
Opportunities for reduction of precipitation uncertainty in conditions of 
convective precipitation is warranted. 

Systematic collection and analysis of the patterns of use for most- 
frequently adjusted operational hydrologic modifiers has not been 
conducted at NWS RFC’s, and that is needed in order to improve the 
usefulness of these findings. 

As discussed in Ray et al. (2019), improved operational practices in 
water systems planning and management hold great promise for 
improvement to system resilience. If floods could be forecasted more 
accurately, what would be the resultant reduction in the burden for 
climate change adaptation measures involving the construction of new 
infrastructure or the altering of operating procedures? These tradeoffs 
should be explored. 

Finally, the heat map results presented in this paper are probability- 
neutral. No one combination of uncertain factors is deemed to be more 
or less likely than another. For example, the combination of modifica
tions “high precipitation/low soil moisture” is given the same likelihood 
weight as “high precipitation/high soil moisture”, when it is clear that 
one of those combinations is more likely than another. Furthermore, it 
has been demonstrated in this paper that calibration biases in both the 
unit hydrograph and the soil moisture estimator result in non- 
symmetrical probability distributions for each of those inputs to hy
drologic forecasts. It may therefore be useful to attempt to characterize 
the multidimensional uncertainty space for all inputs in combination 
using hierarchical Bayesian Belief Network techniques such as those 
described in Taner et al. (2019). 
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