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Abstract

A river contamination risk (RANK) framework is developed to demon-
strate the application of a Computational Fluid Dynamics model in risk
assessment of contamination exposure in surface waters. The ultimate goal
is to identify the factors responsible for potential future river contamination
emergencies, and the use of that insight to inform strategic investments in
resilience-enhancing infrastructure and policies. The RANK model is ap-
plied to preliminary assessment of a historical contamination event in the
Ohio River. The results prove that with higher river velocity, plume passage
becomes faster, with earlier peak time and shorter duration of plume at the
point-of-interest. For the case under study, with increasing the initial spill
duration by 100%, the plume duration at the point-of-interest may increase
85% or 65% depending on the toxicity level of the contaminant. The sen-
sitivity analysis on hydraulic inputs implies that RANK can be utilized for
climate-informed decision analysis in water quality applications.
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1. Introduction

Approximately 50% of the world’s people live within 3 km of a river [1],
and are vulnerable to streamflow extremes (flood/drought) and poor water
quality. These two problems are linked (and likely to worsen with climate
change [2, 3]); however, the impact of streamflow extremes on water qual-
ity has not been given adequate attention in the scientific literature to date
[4]. Floods mobilize contaminants stored on the floodplain [5] and overwhelm
containment and treatment works. Droughts lower water levels, elevating pol-
lutant concentrations, and stagnating flows (decreasing river re-oxygenation).
In combination with warming waters, droughts increase the likelihood and
severity of harmful algal blooms (HABs) [6].

Among its many current effects on the United States, climate change
is raising mean temperature and increasing heavy precipitation events [7].
These changes, in combination with evolving flow regulation strategies and
watershed development, are magnifying floods throughout the United States
[8] and Europe [9], and likely elsewhere [10, 11, 12]. Droughts, on the other
hand, concentrate contaminants, desiccate crops, and increase competition
for water. Projections for mid-century indicate a high likelihood of increased
precipitation extremes [13], with shifting seasonality and reductions in win-
ter snowpack [10] altering the timing and magnitude of peak streamflow
outside of the design range of existing infrastructure and their operating
rules. Therefore, in the process of reducing risks to riparian communities,
the compounding effects of streamflow extremes on water quality require
careful exploration. Most of the work done in risk management and adaptive
capacity [14, 15] has focused on issues of “available water” [16, 17, 18] or
flood risk [19, 20, 21, 22, 23] in isolation, with promising nascent work in
tradeoffs between ecological water needs and anthropocentric water supply
[24, 25, 26]. The state of the art in climate change risk management is less
mature in other aspects of water-resource systems. Though much progress
has been made, for example, in the fields of computational fluid dynamics
(CFD) and water supply risk assessment (including climate change risk) in-
dependently, surprisingly little work has been done to combine the tools of
bottom-up water-resource system risk assessment (e.g., weather generators,
hydrologic models, demographic and land use models, economic trade-off
analysis, Bayesian networks) and contaminant transport (advection, disper-
sion and reaction of contaminants in flowing water) [27, 28], as has been done
in coupled human-hydrologic system modeling.
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Several studies have investigated the effect of climate change on riverine
water quality [29, 30, 31, 32, 33]. These studies mostly focused on ques-
tions of contaminant (or nutrient) loading, as opposed to transport, and give
particular attention to temperature effects [34]. These studies examined the
influence on water quality of changes to climatic variables by monitoring wa-
ter quality parameters during a specific time period, but were not able to
simulate the pollutant fate under changing climate. Other studies related to
climate change impacts on water quality have mostly focused on non-point
source pollution in agricultural watersheds [35, 36, 37, 38, 39]. Although
a few studies [40, 41] have been conducted to assess the impacts of climate
change on pollutant transport, they have not investigated the effect of climate
change and extreme events on the fate of point sources contamination and
chemical spills in rivers. As such, contaminant transport models have not
been included in water system modeling chains, and water quality concerns
have therefore not been directly incorporated into bottom-up assessments of
broader water system resilience.

Previous approaches to risk assessment or uncertainty analysis in prob-
lems of surface water contaminant transport have been almost exclusively of
the one-dimensional (1D) type [42, 43, 44, 45, 46, 47], and have not been
able to adequately reproduce contaminant plume duration. Contaminant
plume exposure is typically the issue of greatest concern to riparian water
utilities, and the inability to accurately model it diminishes the usefulness of
1D water quality risk assessment tools. Higher-dimensional CFD models are
powerful tools to simulate the advection and dispersion of pollutants in sur-
face waters. Many researchers have employed numerical models to simulate
riverine pollutant transport [48, 49, 50], but have done so without evaluation
of water contamination model response to hydro-climatological inputs. Van
Griensven and Meixner [28] found that the major uncertainty in contaminant
transport models relates to the form of the model (i.e., how the processes are
represented), which indicates the importance of the two-dimensional (2D)
CFD formulation, and a well-parameterized coupled human-hydrologic model
for generation of CFD inputs. Additionally, previous approaches to climate
change risk assessment in contaminant transport problems have tended to
evaluate uncertainty in single inputs (e.g., meteorological [27]), but a sys-
tematic exploration of a multidimensional risk space is needed [51, 52].

Risk assessment in contaminant transport using 2D or three-dimensional
(3D) model formulations have predominated in applications relating to the
subsurface [53], but do not have obvious carry-over to riverine problems. The
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standard tools available for 2D or 3D contaminant transport in surface water,
such as the USEPA’s Water Quality Analysis Simulation Program (WASP)
[54, 55] and Environmental Fluid Dynamics Code (EFDC) [56, 57], are not
appropriate for use in a risk assessment framework. Though excellent for their
purposes, they are complex, slow, and data-intensive. Furthermore, they do
not easily support batch runs (batch runs allow multiple runs of a model with
one model call). In contrast, risk assessment requires many simulations to
explore a decision space. Hence, more parsimonious and customizable models
than EFDC/WASP (or others like them) are needed for large watersheds.
Innovation in contaminant transport modeling is required.

Much progress has been made in the simulation of riverine sediment trans-
port, which is largely now conducted in 2D and 3D (e.g., [58, 59]). Specific
achievements of the sediment modeling community include lock-and-dam sed-
iment entrainment and release [60], estimation of bed erosion effects [61],
and improvements in calculation speed [62]. These experiments in sediment
transport tend to be conducted as historical retrospectives, as opposed to
risk assessment exercises, with the exception of studies such as Taner et al.
[63] and Wild and Loucks [64], that factor sediment accumulation into over-
all vulnerability assessments of reservoir performance. Lessons learned from
their methods are applied to the risk assessment approach developed in this
work.

In summary, the scarcity of studies including contaminant transport mod-
els in planning-oriented scenario-exploration modeling chains [65, 66] has
three primary causes: 1) existing contaminant transport models have mostly
been developed for simulation of singular historical events, and are ill-fit
for inclusion in a risk assessment framework requiring exploration of many
scenarios in which variable inputs and even endogenous model process pa-
rameters are uncertain; 2) most candidate contaminate transport models are
of the 1D type, but 2D or 3D contaminant behavior is often needed for
simulation accuracy; and 3) guidance for systematic evaluation of plausible
variability in hydraulic and spill characteristics has not been available.

The present study demonstrates the ability of a generalizable 2D CFD
model to provide insight into the risk of contamination plume exposure in
excess of a threshold. The sensitivity analysis on the hydraulic inputs demon-
strates the beginnings of a path forward for climate-informed decision analy-
sis [65] in water quality applications. The ultimate aim is to identify the spe-
cific factors responsible for compound events of streamflow extremes (flood
or drought) and river contamination events, and the use of that insight to
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inform strategic, staged early planning in resilience-enhancing infrastructure
and policies. This work provides an opportunity for utilities to plan for po-
tential contamination emergencies associated with climate-change-induced
variations in streamflow. Stress tests should be conducted for water utility
systems not only for changes in water quantity, but also for the impact those
water volume changes might have on riverine contamination. The present
analytical process presents utilities with a pathway to identification of the
conditions likely to result in water system failures due to river contamination,
so that system vulnerabilities might be reduced. The research uses a case
study of a 48-kilometer section of the Ohio River upstream of Cincinnati.
The developed framework is applied to preliminary assessment of the risk of
various Ohio River flow velocities and plume attributes on a historical water
contamination event.

2. Methodology

2.1. Framework for Point-of-Interest (PI) risk assessment based on uncer-
tainties

The river contamination risk (RANK) workflow is a chain of data, models
and visualizations capable of identifying riverine water quality risks as func-
tions of hydrological and contaminant characteristic indicators (Figure 1).
Hydrodynamics and pollutant fate and transport components of RANK are
configured using a CFD model developed by Behzadi et al. [66, 67], which
routes both the water and contaminants downstream. The accuracy and ro-
bustness of the model was verified and validated in their work using various
analytical and experimental cases. Digital Elevation Models (DEMs) are the
sources of topographical information of the river of interest (geometry and
bathymetry) and are used to generate the computational mesh as an input to
the RANK model. The underlying distribution, which governs the historical
river flow data, is identified through standard statistical procedures and is the
first input of the CFD model. Contaminant characteristics (e.g., plume dura-
tion and peak concentration), are altered as direct input to the CFD model.
Infrastructure operation policies as well as forecasted data can also be in-
put to the RANK algorithm to explore and predict the current and future
water quality risks. Post-processing visualizations illustrate pollutant spread
with river flow. Breakthrough curves of pollutants at points-of-interest (PI,
defined by the user) show the time of travel, duration, and peak concentra-
tion of the plume. These are the key parameters in health impact evaluations
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[68]. Risk assessments and stress tests are conducted through running various
scenarios of uncertain parameters and infrastructure management policies.

Figure 1: The river contamination risk (RANK) workflow for risk assessment of river
pollution accidents at the point-of-interest (PI).

The RANK model aims to address the limitations of current water quality
models by establishing a two-dimensional finite volume based model. Flow
and transport equations are time-dependent and fully coupled to develop a
robust and accurate model. The RANK model allows for real-world uncer-
tainty including climate, land use, non-point source runoff risks, and human
infrastructure operation. The following standard and widely-used water qual-
ity models are listed in Table 1 and compared to the present RANK model.
1) The Riverine Spill Modeling System (RSMS) was developed to predict
the transport of a constituent as a result of a spill of known quantity and
duration, at a known point on a river or first-order tributary of that river.
The RSMS uses the one-dimensional Branched Lagrangian Transport Model
(BLTM) and USACE CASCADE model to estimate the pollutant concentra-
tion and to predict plume time-of-travel, leading edge, peak, and trailing edge
[69]. 2) The Hydrologic Engineering Center’s River Analysis System (HEC-
RAS) software, developed by the US Army Corps of Engineers (USACE), al-
lows for one-dimensional sediment transport computations and water quality
analyses [70]. 3) The Water Quality Analysis Simulation Program (WASP)
is a dynamic fate and transport model, developed by US Environmental Pro-
tection Agency (USEPA), which simulates concentration of environmental
contaminants in surface waters in one, two, or three dimensions. WASP
should be linked with hydrodynamic models to provide flows, depths, and
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velocities [71]. 4) The Environmental Fluid Dynamics Code (EFDC) is a
surface water modeling system, developed by US Environmental Protection
Agency (USEPA), which includes hydrodynamic and contaminant compo-
nents [72] (see Table 1).

River water mixes with groundwater as it is diverted along subsurface
flow paths, bringing with it a myriad of chemical solutes that are transported
throughout the shallow streambed by advective and dispersive processes [73].
While the groundwater may affect the pollutant transport for low flow con-
dition of the river, in the current study the focus is on the mass transport
in surface waters and showing the accuracy and risk assessment capability of
the RANK framework compared to widely-used water quality models.

2.2. Computational Fluid Dynamics (CFD) model
The three components of the applied computational algorithm are: math-

ematical modeling, grid generation, and numerical discretization. Each com-
ponent is described in the following sections. The Riemann flux approxima-
tion [74] and a source-term balancing method [75, 76] is applied to develop
a well-behaved and well-balanced numerical scheme.

Governing system of equations. The Shallow Water Equations (SWEs) are
a set of nonlinear hyperbolic equations well established in water resources
management to mathematically describe long wave hydrodynamics of free
surface flows when the vertical acceleration of the water particles has a neg-
ligible effect on the pressure [77]. In this study the two-dimensional shallow
water equations coupled with the depth-averaged scalar transport equation
presented in [66] are applied in the computational algorithm to simulate the
flow field and plume passage simultaneously. The non-dimensional form of
the SWEs system may be written in conservative form as

∂Q

∂t
+
∂F (Q)

∂x
+
∂G(Q)

∂y
+ S(Q) = 0 (1)

Q =


h
hu
h v

 (2)

S =


0

−(h− hs)∂hs∂x
+ τbx

−(h− hs)∂hs∂y
+ τby

 (3)
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Table 1: Comparison of widely used water quality models with the present RANK model.

RANK RSMS [69]
• 2D model capable of simulating both longi-
tudinal and lateral dispersion of contaminant
• capable of simulating both point and non-
point source
• capable of handling infrastructure opera-
tions
• capable of run in a continuous period of time
for large reaches

• 1D model incapable of simulating lateral
flow and dispersion of contaminant
• unable to handle non-point source pollution
• unable to handle infrastructure operations
• has to be run in discrete series of start/stop
simulations
• unable to handle a single run of the whole
reach

RANK HEC-RAS [70]
• flow and transport equations are 2D and ca-
pable of simulating both longitudinal and lat-
eral dispersion of contaminant
• capable of handling many simulations for use
in a risk assessment framework

• 1D advection-dispersion equation for water
quality simulation unable to reproduce lateral
spreading of plume
• currently not well suited for risk assessment
framework

RANK WASP [71]
• simulates both flow routing and contami-
nant transport simultaneously and in a time-
dependent manner
• capable of handling many simulations for use
in a risk assessment framework

• has to be linked with a hydrodynamic model
to calculate flowrate and velocity components
and use them as inputs
• not appropriate for use in a risk assessment
framework, as doesn’t support batch runs

RANK EFDC [72]
• flow and transport equations are fully cou-
pled and are solved simultaneously
• supports unstructured meshes, allowing bet-
ter representation of complex geometry, varied
cell sizes, and rapid changes in cell sizes, im-
proving accuracy and computational efficiency
• finite volume model, improving mass conser-
vation
• suitable for risk assessment framework

• sequentially solves the external mode equa-
tions (depth integrated continuity and mo-
mentum equations), the internal mode equa-
tions (shear stresses), and the transport equa-
tions
• often overparameterized and highly complex
• slow and unequipped for uncertainty in
many inputs
• does not support unstructured meshes
• finite difference model
• not suitable for risk assessment framework

F =


hu

hu2 + 1
2
(h2 − h2s)

hu v

 (4)

G =


h v
h u v

h v2 + 1
2
(h2 − h2s)

 (5)

where h and hs are the water depth and the bed level, respectively, and u
and v are velocity components. τbx and τby denote frictional stresses on the
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bottom, which are defined as (the Chezy model [78])

C =
R1/6

n
(6)

τbx =
g u
√
u2 + v2

C2
(7)

τby =
g v
√
u2 + v2

C2
(8)

Here C is the Chezy number, n is the Manning coefficient, R is the hydraulic
radius approximated based on the flow depth h, and g is the gravitational
acceleration constant.

Grid generation. In order to apply the conservation laws and implement the
mathematical formulation, the pre-processing step in computational model-
ing is the discretization of the geometry of the river of interest into discrete
volumes. A well-constructed mesh significantly improves the accuracy of the
solution. In the present study, an unstructured mesh is generated to de-
termine nodes and triangular elements connectivity. Unstructured meshes
offer flexibility to conform to complex geometries, convenient refinement and
de-refinement, and rapid change from small to large elements.

Numerical discretization. Among options for numerical scheme, finite volume
methods have been extensively applied to simulate flow and mass transport,
mainly due to the mass conservation property and lower memory require-
ments [79]. The finite volume method discretizes directly the integral form of
equations (mass, momentum, and transport equations in the present study)
over an arbitrary fixed domain. In this study, the spatial domain is divided
into triangular cells, and a node-centered finite volume scheme is applied
based on the median dual control volume. To evaluate a conservative and
well-behaved flux at each control-volume interface, the primitive-variable Roe
scheme is applied using the Roe-averaged values. Second-order accuracy is
used in space and time with a nonlinear implicit scheme based on a Newton-
iterative algorithm for the time integration. For an implicit scheme, the
system of nonlinear equations must be linearized using a Newton-iterative
algorithm [80], and the resulting sparse linear system is solved at each New-
ton iteration using the Gauss-Seidel stationary iterative method [81]. The

9

Jo
urn

al 
Pre-

pro
of



mathematical formulation and the source term balancing scheme utilized in
this study satisfies still-water equilibrium on the arbitrary bed topography
and allows for possible wet and dry interfaces within the solution domain,
which are essential components in river flow simulations.

3. Ohio River basin case study

After the Mississippi River, the Ohio River is the largest by flow in the
United States, and it suffers from contamination, low-water navigation re-
strictions, and flooding. The river supports centers of American agricul-
ture, energy, and industry, transports approximately $40 billion worth of
goods each year, and provides cooling or turbine water for approximately
450 power plants located within the watershed mainstem [82]. More than
27 million people live within the Ohio River watershed, 5 million of whom
obtain their drinking water from the mainstem [82], and in 2016 it was de-
scribed by the United States Environmental Protection Agency (USEPA) as
the most contaminated surface water body in the United States [83]. The
contaminants of greatest concern are nutrients and mercury [84], though the
river also suffers from high levels of legacy organochlorines (e.g., PCBs),
“emerging compounds” (e.g., PBDEs), and PFOA [85]. The people who ob-
tain their drinking water directly from the Ohio River are subject to frequent
contamination events. Ohio River flow velocity ranges more than an order of
magnitude from approximately 0.09 to 3.2 m/s. Climate change effects such
as increased evapotranspiration, seasonal precipitation shift and concentra-
tion of precipitation in already-wet months may change the factors dictating
river flows and velocities in the future [86].

Water quality monitoring and modeling in the Ohio River basin is a col-
laborative effort, involving the National Weather Service (hydrologic mod-
eling, stream routing and operational river forecasting [87]), the US Army
Corps of Engineers (reservoir and infrastructure modeling), and the Ohio
River Valley Water Sanitation Commission (contaminant transport model-
ing in cooperation with the US Geological Survey and the US Environmental
Protection Agency). Local utilities, such as the Greater Cincinnati Water
Works (GCWW), participate as well, and are stakeholders in the operation
of a tool called the Ohio River Community Model [88]. The model is based
on one-dimensional HEC-RAS routing, supplemented with a BLTM (see pre-
vious description of the RSMS model), requires disjoint, stitched model runs
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at short time horizons, and performs poorly in the estimation of contaminant
plume duration.

3.1. Case study of Cincinnati
GCWW, Cincinnati’s public water supply utility, provides 416 million

liters per day to approximately 1.1 million residents of southwest Ohio and
northern Kentucky. Eighty percent of GCWW water supply is taken directly
from the Ohio River [89], with the remaining twenty percent extracted from
groundwater within the hydrologically-distinct Miami River basin 50-60 kilo-
meters away. GCWW maintains offline storage equivalent to approximately
2 days of total demand, meaning that in an emergency it could close its Ohio
River intake and draw from storage for up to approximately 48 hours. Three
recent events have demonstrated the risks facing GCWW supply integrity,
which represent the kinds of events that must be expected in the future,
and against which the water system must be made resilient: 1) the Freedom
Industries, West Virginia, 4-methylcyclohexane methanol (MCHM) spill of
January 2014 [68]; 2) a diesel oil spill at a New Richmond, Ohio, Duke Energy
generating facility in August 2014 [90]; and 3) the Southern Towing ammo-
nium nitrate spill caused by a barge hull failure on the Benchmark River,
Cincinnati, Ohio, in December 2017 [91]. Other spills occur with at least
annual regularity, with evidence of linkages between historical flood events
and microbial and chemical contamination of the river [92]. While none of
these events resulted in water supply interruptions for Cincinnati, Cincinnati
has on these and other occasions narrowly avoided disastrous water supply
disruptions because of favorable hydrologic conditions. These conditions are
subject to changing likelihoods in the future. It is reasonable to expect that
water supply interruptions might have occurred, had hydrological and/or
contaminant conditions been slightly different. Furthermore, Cincinnati’s
relative invulnerability may not apply to other cities drawing water from the
Ohio River, with less offline storage or less robust water treatment infras-
tructure.

4. Model validation: Freedom Industries spill of 2014

On January 9, 2014, an estimated 37,854 liters of crude MCHM, an or-
ganic solvent used in coal processing, was released from a Freedom Industries
facility into the Elk River, a tributary of the Kanawha River, near Charleston,
West Virginia (Figure 2a). The chemical spill occurred just 1.61 kilometers
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upstream from an intake to the Kanawha Valley Water Treatment Plant,
which left almost 300,000 residents in nine West Virginia counties without
access to potable water [45]. The developed RANK model is configured and
applied for a 48-kilometers section of the Ohio River from Meldahl dam to
Cincinnati including the GCWW water intake (Richard Miller Treatment
Plant: RMTP). The goal is to simulate and reproduce the Freedom Indus-
tries spill of MCHM into the Ohio River in January 2014 and conduct a stress
test on Cincinnati’s drinking water vulnerability following the spill. DEMs
are used to extract the geometry and bathymetry of the river portion of in-
terest, which are later employed to generate the computational mesh. The
required data (e.g. River velocity at Meldahl, MCHM measurements at Mel-
dahl, Beckjord, and RMTP, river stage and discharge per availability) were
collected from U.S. Geological Survey (USGS) website [93] and the Water
Quality and Treatment Division of GCWW.

Figure 2b presents the geometry and the computational grid for the por-
tion of the Ohio River under study. The two-dimensional unstructured mesh
is generated once before starting the CFD simulation. For the current study,
a uniform mesh is preferred to obtain the same accuracy throughout the
domain. However, if a higher solution accuracy is required at the point-of-
interest, the mesh may be refined near its location. The average grid spacing
of the computational domain is 40 (m), resulting in 31,015 computational grid
cells and the average total CPU time for simulation runs is approximately
24 hours (CPU with Turbo: Intel Xeon E5-2637 v4 (16) @ 3.700GHz).

A no-slip condition is enforced at side boundaries. An inlet boundary con-
dition is imposed at the location of Meldahl Dam and a free outlet boundary
condition is imposed at the Cincinnati location. The Gaussian function [94]
is used to estimate the temporal distribution of measured MCHM level at
Meldahl. The shape of the Gaussian function is determined by two parame-
ters, mean (µ) and standard deviation (σ); thus, the initial concentration at
Meldahl can be estimated as

φ(t) =
α

σ
√
2π
e

−(t−µ)2

2σ2 (9)

where φ is the MCHM concentration (ppb: parts per billion), t is time in
hours since time zero (in this case, hours after the Elk River spill started in
Charleston, West Virginia), α = 220, µ = 139.5 and σ = 4.5. Model settings
and parameters are summarized in Table (2).

The initial condition applied at Meldahl and the simulated breakthrough
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Table 2: Numerical model settings and parameters for the case study of Ohio River reach
from Meldahl to Cincinnati.

Model setup and parameters Value
Initial river stage 12.2 (m)

Initial river flow velocity 1.6 (m/s)
Temporal distribution of MCHM concentration at Meldahl Estimated by Equation (9)

Coefficient of MCHM distribution (α) 220
Mean of MCHM distribution (µ) 139.5

Standard deviation of MCHM distribution (σ) 4.5
Boundary Condition applied at the boundary

Inlet (Meldahl) Constant velocity of 1.6 (m/s)
Outlet (Cincinnati) Free outflow

River sides No-slip walls

curves at Beckjord and RMTP are visually compared to the sample data in
Figure 3. Figure 4 displays three snapshots of the simulated contaminant
dispersion in the Ohio River from Meldahl to Cincinnati. It shows that the
plume arrives at Beckjord, and later at RMTP, after 135 hours and 140
hours, respectively. Plume arrival is calculated with the threshold of 1 ppb
of MCHM concentration.

(a) (b)

Figure 2: a) Freedom Industries spill location, b) The portion of the Ohio River under
study stretching from Meldahl dam to Cincinnati and the generated unstructured mesh.

Previous studies of this spill have presented one-dimensional models of
flow and contaminant transport [45, 95]. These one-dimensional models do
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(a) Meldahl (b) Beckjord (c) RMTP

Figure 3: MCHM concentration of January 2014 Freedom Industries spill into the Ohio
River. Solid line: RANK simulation results; Dots: sample data; Dashed line: the previous
study of Bahadur and Samuels [45]. a) The initial condition estimated by Equation (9); b)
simulated results at Beckjord compared with sample data; c) simulated results at RMTP
compared with sample data.

(a) t=128 (hours) (b) t=135 (hours) (c) t=140 (hours)

(d) Concentration (ppb)

Figure 4: Simulation results for contaminant dispersion in the Ohio River from Meldahl
to Cincinnati (hours after the Elk River spill started in Charleston, West Virginia)

not consider the width and stage variations along the river reach [96], which
limits their application to reaches with constant width and steady water
depth. Moreover, the model in [45] is designed to evaluate the contaminant
concentration only, without simulating the river hydrodynamics such as tran-
sient water stage and directional velocities. It uses mean flows and velocities
from the existing datasets and updates these flows and velocities based on
nearby real-time gauge readings. Whereas, the present RANK model proto-
typed in Figure 2 is two-dimensional, and capable of simulating longitudinal
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and transverse velocity components based on variable time of arrival, time
of peak, and duration of the plume at a PI as governed by the transient
CFD equations. Figure 3c is a demonstration of improvements achieved on
previous estimation of contaminant transport reproduction at the GCWW
intake.

To quantify the agreement between the present model and the obser-
vations [97], plume passage characteristics evaluated at each location are
presented in Table 3, and the related percent errors are compared in Table 4.
The RANK model estimates the time of peak concentration with errors less
than 2.3% at all three locations. According to the aforementioned differences
in applying the velocity field, the error in peak concentration at RMTP is
32% in [45], while it is estimated with 0.95% error using the RANK model. It
is reasonable to assume, based on visual inspection of the measured samples
at Beckjord in Figure 3b, that the peak concentration may have occurred
between two sampling moments, and thus the real peak was missed. This
assumption would lead to the reported error at Beckjord calculated in Table
4 being interpretable as an overestimate. The duration of plume is repro-
duced using RANK at Beckjord and RMTP locations with 6.5% and 1.8%
errors, respectively, while [45] shows 152% error in reproduction of the plume
duration at RMTP.

Table 3: Comparison of plume passage characteristics and the percentage of errors (E),
shown in Figure 3.

Time of peak
(hours after spill)

Peak concentration
(ppb) 1

Plume duration 2

(hours)
Location Meldahl Beckjord RMTP Meldahl Beckjord RMTP Meldahl Beckjord RMTP
Samples 138.4 144.25 148 19.3 18.7 21 24 20 22
RANK 139 145.8 151.4 19.5 20.9 20.8 22.4 21.4 22.4
[45] 3 - - 146.8 - - 14.2 - - 55.5

1 parts per billion
2 The plume duration is calculated with the threshold of 1 ppb of MCHM concentration.
3 Bahadur and Samuels [45]

Table 4: The percentage of error in plume passage characteristics compared to sample
data.

Error in time of peak
(%)

Error in peak concentration
(%)

Error in plume duration
(%)

Location Meldahl Beckjord RMTP Meldahl Beckjord RMTP Meldahl Beckjord RMTP
RANK 0.43 1.07 2.3 1.04 12 0.95 6.7 6.5 1.8
[45] - - 0.81 - - 32 - - 152
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5. Risk assessment

For water quality risk assessment, a stress test can usefully be conducted
on key factors of a contamination event, such as flow characteristics and
spill duration. In this section, several scenarios of flow and contaminant
characteristics are applied in the simulation of the MCHM spill in January
2014, and the results of the stress test are interpreted for their impact on
Cincinnati’s drinking water intake.

5.1. Flow characteristics
One of the principal drivers of pollutant transport in rivers is the flow

velocity [98]. The annual maximum and minimum stages were obtained
from the National Weather Service [99]. The annual peak discharge was
obtained from HEC-SSP (HEC-Statistical Software Package), which auto-
matically downloads the data from the USGS website. For the river portion
shown in Figure 2, the historical stream velocity data is available for USGS
station 03255000 located at Cincinnati, OH. A stage-discharge-velocity re-
lationship is established with the data retrieved from [93] and the annual
maximum velocities and annual minimum stages are presented in Figure 5.
Given that the flow velocity during the historical event in January 2014 was
not the peak for that year (see Figure 5a) and the maximum annual velocity
in many other historical years was higher than 2014 (e.g., the largest flood in
the history of Cincinnati occurred in January 1937), the flow velocity in Jan-
uary 2014 could have been much larger, with consequences to contaminant
transport.

Unlike for high-velocity conditions, the historical record is a less useful
reference for low-velocity conditions of the Ohio River. According to the Ohio
River Valley Water Sanitation Commission (ORSANCO), there are twenty-
one locks and dams constructed on the Ohio River, mostly after 1959 [100].
Locks and dams raise minimum stages during the low-flow period at the end
of each summer (see Figure 5b), and slow river velocities, sometimes to near
stagnation. This is of great benefit to navigation during summer and fall,
but makes translation of river stage measurements into velocity values during
dry periods nearly impossible.

To investigate the impact of flow velocities that can reasonably be ex-
pected to occur along this reach of the Ohio River, three low flow scenarios
as well as three historical floods of Cincinnati, presented in Table 5, are se-
lected for the stress test. These specific flows were chosen to include a broad
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(a) Maximum annual velocity

(b) Minimum annual stage

Figure 5: Extreme annual river stage and velocity of the Ohio River at Cincinnati station
(USGS 03255000). a) Maximum annual velocity. The river velocity during MCHM spill of
2014 is also shown for the sake of comparison. b) Minimum annual stage. Construction of
locks and dams on the river increased the river stage in two phases, after 1921 and after
1959 [100].

range of velocity magnitude, severity level, and probability-of-exceedance.
The research question is: What would happen to contaminant plume dura-
tion at the GCWW intake if the January 2014 MCHM spill had occurred
instead during a low flow or high flow period, such as the July 1914 and
March 1997 periods?

Low-velocity values were sampled from pre-1960 records, before the im-
pacts of locks and dams on the Ohio River became dominant. During hot
dry summers, such as occurred in the Ohio River basin in 2015, river veloc-
ities could decrease below the 0.31 m/s year 1914 minimum value used for
this study, and exploration of the impact of lock and dam operation on con-
taminant plume passage is therefore an important subject for future study,
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Table 5: Historical floods and low flows in Cincinnati used
in the RANK model. These specific flows are chosen to
cover a broad range of severity level for floods as well as
historical low flows to cover the real flow range of the Ohio
River.

Date Flow (m3/s) Stage (m) Velocity (m/s)
Jul 1914 506.87 1.37 0.31
Sep 1910 877.82 2.69 0.64
Jul 1955 1716.00 4.26 0.94
Jan 2014 * 8017.09 12.2 1.60
Jan 1951 11100.71 14.9 1.95
Jan 2005 14041.96 17.3 2.25
Mar 1997 17405.26 19.7 2.57
* Baseline.

beyond the scope of the current work. The highlighted row of Table 5 shows
the velocity during the historical MCHM spill of January 2014.

5.2. Contaminant characteristics
Spill characteristics also indicate variations in the level of risk at the

point-of-interest. Particularly for chemical spills upstream of water treatment
plants, plume duration influences the time period during which the treatment
plant should be shut down. This may result in drinking water shortage to
the affected residents. Therefore, to evaluate the potential influences of spill
perturbations on water supply interruption, the initial plume duration of spill
2014 (τ) at Meldahl is increased by 50% (1.5τ) and 100% (2τ).

5.3. Bathymetry
Another factor, which may impact the risk level at the point-of-interest,

is the bathymetry of the river, i.e. the river bed topology. To evaluate
the sensitivity of the drinking water supply to the bathymetry, the 2014
spill is reproduced with the actual and flat bed topology and the results are
compared in the following section.

6. Results and Discussion

6.1. Flow and contaminant stress test
The selected flow characteristics (Table 5) combined with the plume char-

acteristics of actual and extended MCHM spill of 2014 (Figure 6) were input

18

Jo
urn

al 
Pre-

pro
of



into the RANK model, and the output results are presented in Table 6 and
Figure 7. Plume duration is evaluated at two threshold levels of contaminant
concentration, 0.01 ppb and 1 ppb. The concentration of 1 ppb is selected
because it represents the average detectable level of MCHM concentration
according to sampling results [97] and West Virginia Testing Assessment
Project (WV TAP) [101]. The concentration of 0.01 ppb is chosen solely
for the purpose of risk assessment, to show that the toxicity threshold and
detectable level of contaminant could also influence spill response strategies.

Figure 6: The initial plume duration at Meldahl (τ) is perturbed with 50% (1.5τ) and
100% (2τ).

Table 6: Stress test on river flow and plume characteristics at RMTP. The flow of spill
2014 replaced by historical floods and low flows of Cincinnati. The plume duration of spill
2014 at Meldahl (τ) is extended by 50% (1.5τ) and 100%(2τ).

Time to Peak
(hours after spill)

Plume duration (hours)
safety level of 0.01 (ppb)

Plume duration (hours)
safety level of 1 (ppb)

aaaaaaa
Flow

Plume Velocity
(m/s) τ 1.5τ 2τ τ 1.5τ 2τ τ 1.5τ 2τ

Low flow 1914 0.31 258 268 278.2 93.1 103.2 114.4 40.4 50.5 61.7
Low flow 1910 0.64 179.5 189.5 199.7 83.2 96.7 110.5 28 38 46
Low flow 1955 0.94 162.6 172.7 182.8 72 85 104 25 32.5 41.5

Jan 2014 1.60 151.4 160.4 170.5 43.8 60.6 72.9 22.4 30.3 41.5
Flood 1951 1.95 148 158 167 34.8 49 64.8 20.2 30.3 42.3
Flood 2005 2.25 147 157 166 33.5 48 63.9 20.2 31.4 42.6
Flood 1997 2.57 145 156 165 32.4 47.1 63.4 20.2 31.4 42.6
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The stress test results demonstrate that with higher river velocity, plume
passage becomes faster, with earlier peak concentration time and shorter
duration of plume at RMTP (Table 6). For instance, when the river velocity
is increased by 60% (from January 2014 with velocity of 1.6 m/s to the flood
of 1997 with velocity of 2.57 m/s), the plume arrives at its peak level at
the RMTP location 6.4 hours earlier.When the river velocity is decreased
by 81% (from January 2014 with velocity of 1.6 m/s to the flow of 1914
with velocity of 0.31 m/s), the time to peak concentration is delayed by
106.6 hours. These calculations presume a free-flowing, if slow, river. Note
that the ability of locks and dams to retain river flows during dry periods,
retarding river flow to the point of stagnation, has potential to fundamentally
alter these calculations, and must be included in future, improved versions
of contaminant transport hydraulic modeling.

Moreover, with the flow of January 2014, and increasing the initial spill
duration by 100%, the plume duration at RMTP may increase 85% or 65%
depending on the toxicity level of the contaminant.

Though the higher velocity results in a shorter shut-down period for the
treatment plant, it leaves the water utility managers with less time to make
an initial assessment of the spill and to decide on the emergency response.
On the other hand, lower flow velocity imposes a higher risk on drinking
water supply due to the longer period of the plant shut-down and limited
off-line storage of drinking water.

The simulation results shown in Figure 7 indicate that lower river velocity
and prolonged initial spill duration impose higher risks on the drinking water
supply. If contaminant plumes at levels greater than human-health standards
persist for more than two days, GCWW’s offline storage is exhausted and
municipal water supply interruptions to Cincinnati are likely to result. In
particular, if the toxicity level of spilled chemical is determined at 0.01 ppb
(Figures 7a and 7c), the drinking water storage is more at risk than at the
toxicity level of 1 ppb (Figures 7b and 7d).

Figures 7c and 7d demonstrate the combination of river/contaminant
conditions with two toxicity levels that may create failure at Cincinnati.
Risks to water supply in Cincinnati are presented relative to critical threshold
of plume passage duration (two days) at RMTP as a function of the initial
spill duration at Meldahl and the river velocity. In the solid region of the plot
the off-line storage is sufficient to cover a shutdown of the Ohio River intake
until the plume passes the water intake; whereas the hatched zone indicates
conditions leading to potential water supply disruptions. If the upstream
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(Meldahl) contaminant plume passage lasted longer than 1.5τ and the river
velocity were lower than 1.6 m/s, for example, then a failure would occur (at
the threshold level of 0.01 ppb).

(a) Calculated plume duration at
RMTP with safety level of 0.01 ppb.

(b) Calculated plume duration at
RMTP with safety level of 1 ppb.

(c) Stress surface with safety level of
0.01 ppb.

(d) Stress surface with safety level of 1
ppb.

Figure 7: Stress test on the MCHM spill of 2014 using historical floods and low flows
presented in Table 5. The simulated plume duration at RMTP is compared for different
initial spill duration (presented in Figure 6), with the safety level of (a) 0.01 ppb, and
(b) 1 ppb. The labels show the year of the applied flow characteristics. Also, the stress
surface on the duration of MCHM at RMTP with 48 hours storage capacity depicted at
safety level of (c) 0.01 ppb, and (d) 1 ppb. For all subplots, the red zone presents the
failure zone where the plume duration lasts more than two-day (48 hours) threshold of the
off-line storage for Cincinnati’s drinking water supply.

6.2. Bathymetry stress test
The previous simulations were carried out with the real bathymetry of

the river. In this section, the sensitivity of the drinking water supply to the
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river bathymetry is evaluated by comparing the RANK results for the real
bathymetry and a uniform flat river bed. The flow and plume characteristics
of MCHM spill of 2014 were input to the RANK model and the results
are presented in Table 7. With a flat river bed, MCHM reaches its peak
concentration at RMTP location approximately 8 hours earlier compared to
the case with the real bathymetry. Lower plume duration is also detected in
the case with a flat topography. These results confirm that the accuracy of
the model in reproducing spill cases is crucial in assessing the risk of water
supply interruption as the plume peak time and duration are the key factors
in the water intake shutdown in case of a chemical spill.

Table 7: Bathymetry effect on plume characteristics at RMTP. The spill of January 2014
reproduced with the real bathymetry and the flat bed.

Time to Peak
(hours after spill)

Plume duration (hours)
safety level of 0.01 (ppb)

Plume duration (hours)
safety level of 1 (ppb)

Flow and
Plume conditions

Real
Bathymetry Flat bed Real

Bathymetry Flat bed Real
Bathymetry Flat bed

Jan 2014 151.4 143.14 43.8 39.96 22.4 21.03

7. Conclusion

This study demonstrated an application of a fluid dynamic model, RANK,
to water quality risk assessment and its ability in evaluating risks of hydro-
logic/hydraulic change. The contribution of the developed model is twofold:
1) It allows for variable channel width, water depth, and velocity, which
makes it more accurate and flexible than existing tools in application to
complex study areas. The accuracy of the RANK model in reproduction
of contaminant plume duration makes the water quality stress test possi-
ble. 2) It can be used for scenario analysis and stress testing by changing
uncertain inputs as initial and boundary conditions, including flow velocity,
non-point source pollution, infrastructure operating rules, biological activ-
ity (e.g., harmful algal blooms), and temperature effects. The model is also
capable of applying time dependent velocity variations at every grid cell to
address floods and runoff points. The RANK model is expected to be useful
in a wide range of climate change risk assessments to evaluate the water qual-
ity impacts of flood and low flow. The sensitivity analysis on hydraulic inputs
implies that the model can be utilized for climate-informed decision analysis
[102, 65] in water quality applications. An initial prototype application of the
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developed framework was presented in this paper and applied for evaluating
the risks of water supply disruption in Cincinnati due to a historical chemical
spill on the Ohio River. The next step in advancing RANK is to automate
the process of the computational mesh generation based on existing Digital
Elevation Models for the river of interest. Future research will use the RANK
model to evaluate risks to water quality for riparian cities from potential fu-
ture changes in climate, land use, and infrastructure operation. This will
be accomplished by linking RANK into a workflow of simulation models in-
cluding a weather generator (preferably one with direct linkages to physical
climate processes, such as Steinschneider et al. [103]), a hydrologic model,
and a reservoir operation model. This chain of models will allow careful
attention to harmful algal blooms, and better understanding of the relative
impacts of navigational, agricultural, and industrial sector impacts on water
quality. Evaluation of the ecological responses to the river pollution could be
another extension of the RANK model for future studies. In addition, future
research should consider: 1) the groundwater contribution in driving the pol-
lutant transport; and 2) a potentially evolving bathymetry. At its present
execution speed, the RANK model is not easy to apply to long rivers, or
to many simulations. The present study applies RANK to a 48-kilometers
river reach, and to a handful of scenarios of possible future conditions. The
aim for future applications is to apply RANK for long rivers under all sce-
narios resulting from full factorial combinations of many climate-related and
non-climate uncertainties that may affect river contamination. For that pur-
pose, RANK needs to respond faster by involving multiple computational
cores which could be done through updating the existing model using paral-
lel programming. At sufficiently fast computational speeds, the RANK tool
might also be suitable for real-time operations and disaster response, but
that purpose is beyond the current scope of study.

This study has taken a basic approach to climate change stress testing in
the interest of demonstrating a proof-of-concept. The impact on water qual-
ity at the location of a riverine water intake was explored from delta-shifts
in long-term average precipitation and temperature. The magnitude and di-
rection of these delta-shifts were informed by the full ensemble of the current
generation of General Circulation Model (GCM) output produced by the In-
tergovernmental Panel on Climate Change (IPCC). The delta-shifts in long-
term average conditions were applied to alter the relatively short-duration
spill event evaluated in this case. As new generations of IPCC model out-
put become available, the delta-shifts should be updated to accommodate
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evolving understanding of climate change science. However, exploration of
the climate change impacts (e.g., increased evapotranspiration, seasonal pre-
cipitation shift, exacerbation of precipitation extremes) on water quality was
outside of the scope of the present study, but is recommended as a subject
for future research. Such studies are accomplishable with the RANK model
presented here.
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 RANK allows for variable channel width, water depth, and velocity leading to accurate results. 

 RANK considers uncertainty of climate, pollution source, and infrastructure operations. 

 RANK is tuned for stress testing on water contamination and water supply interruption. 

 RANK is suited for climate change risk assessments to evaluate the water quality impacts. 
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